#include <utils/TypeConfig.h>
#include <utils/MemorySpaceType.h>
#include <linearAlgebra/LinearAlgebraTypes.h>
#include <linearAlgebra/LinearSolverFunction.h>
#include <linearAlgebra/OperatorContext.h>
#include <electrostatics/LaplaceOperatorContextFE.h>
#include <linearAlgebra/PreconditionerJacobi.h>
#include <linearAlgebra/PreconditionerNone.h>
#include <basis/FEBasisManager.h>
#include <basis/FEBasisOperations.h>
#include <basis/FEBasisDataStorage.h>
#include <quadrature/QuadratureValuesContainer.h>
#include <vector>
#include <memory>
#include <utils/Profiler.h>
#include <electrostatics/PoissonLinearSolverFunctionFE.t.cpp>
Go to the source code of this file.
Classes | |
class | dftefe::electrostatics::PoissonLinearSolverFunctionFE< ValueTypeOperator, ValueTypeOperand, memorySpace, dim > |
A derived class of linearAlgebra::LinearSolverFunction to encapsulate the Poisson partial differential equation (PDE) discretized in a finite element (FE) basis. The Possion PDE is given as: \(\nabla^2 v(\textbf{r}) = -4 \pi \rho(\textbf{r})$\f
with the boundary condition on
\)@_fakenlv(\textbf{r})|_{\partial \Omega}=g(\textbf{r})$\f ( \(\\partial Omega$\f denoting the boundary of a domain \)\Omega$\f). Here \(v$\f has the physical notion of a potential (e.g.,
Hartree potential, nuclear potential, etc.) arising due to a charge
distributin \)\rho$\f. More... | |
Namespaces | |
namespace | dftefe |
dealii includes | |
namespace | dftefe::electrostatics |